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Abstract

The conventional discrete ordinates approximation to the Boltzmann
transport equation can be described in a matrix form. Specifically, the
within-group scattering integral can be represented by three
components: a moment-to-discrete matrix, a scattering cross-section
matrix and a discrete-to-moment matrix. Using and extending these
entities, we derive and summarize the matrix representations of the

second-order transport equations.
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Discrete Ordinates Approximations to the First- and
Second-Order Radiation Transport Equations

1. Introduction

The CEPTRE code, which stands for Coupled Electron-Photon Transport
for Radiation Effects, is under development under the ASCI program at
Sandia. It is designed to provide radiation transport capabilities for the
subsequent mechanical and electrical analysis. The major features of the code

include:

- multigroup energy discretization,’

« angular discretization with discrete ordinates approximation and
with arbitrary order of anisotropic scattering,?
* continuous linear or quadratic finite-element approximations on
unstructured mesh,?
- parallel options with message passing interface,
* object-oriented program architecture to allow ease of maintenance
and extension.
Moreover, the CEPTRE code is based on a novel approach in which the space-
angle dependence is solved simultaneously by using the conjugate gradient
method.? This solution technique offers two advantages over the conventional
source 1teration. First, it eliminates the need for the inner iterations which is
notoriously slow for electron transport. Second, the global system is built and
processed in a distributed fashion which is well suited for massively parallel

computers.

The objective of this report is to document the mathematical basis of the
CEPTRE code including both the first- and second-order formulation of the

radiation transport equation. We emphasize the energy and angular



discretizations while the finite element analyses are presented in a follow-up
report. We begin by discussing the first-order Boltzmann transport equation
in a general context. The multigroup Legendre expansion to treat the
scattering cross section and the discrete ordinants approximation to treat the
angular dependence are introduced to reduce the transport equation to a
system of energy-independent, discrete equations. We then outline a
procedure to cast the discrete equations into a matrix form by expressing the
within-group scattering integral with three components: a moment-to-discrete
matrix, a scattering cross-section matrix and a discrete-to-moment matrix.
This matrix representation involves combining the discrete angular flux into a
vector which constitutes the fundamental unknown of the simultaneous

space-angle solution.

The discrete ordinates approximation can also be applied to the second-
order forms of the transport equation which are recognized as the self-adjoint
angular flux (SAAF)? and the even-odd parity (EOP)? equations. The
fundamental unknowns of the SAAF equation are the full-range angular flux
while that of the EOP equations are the even- and odd-components of the
angular flux. Nevertheless, we demonstrate that these discrete, second-order
transport equations can be structured into a unified form with properly
defined matrix components. This unified formulation not only allows us to
derive the corresponding finite-element equations in a generalized fashion,

but also mitigate the complexity in program structure to accommodate both

the SAAF and EOP equations.



2. Boltzmann Transport Equation

The vast majority of numerical transport calculations are carried out by
solving the linear Boltzmann equation in which the radiation field of the
problem space is characterized by the angular flux distribution over the phase
space of time, position, direction, and energy. For a time-independent problem

with an external source, this equation has the form of?

Q-Vy(r,Q E)+o(r, E)y(r, L, E)

(1)
:J‘“’j 6,(r, Q = Q, E — E)W(r, Q' EdQ dE’ +5(r, Q, E)
0Y4n

where V is the gradient operator in the cartesian geometry, and
v(r, Q, E) = the angular flux of energyE at position r in the direction Q,

o(r, E) = the macroscopic cross section which gives the probability of

collision per unit path length,

o,(r,Q — Q, E’— E) = the differential scattering cross section where
o.(r,Q — Q, E'— E)dQdE gives the probability
per unit path length that particles at position r

with energy E’ in the direction Q' scatter into dE
about E and into a cone of direction dQ about Q,

S(r, Q, E) = the external particle source distribution.

In this manuscript, we will use the symbol V to denote the spatial domain
which 1s bounded by an external boundary A. The particle direction spans the
entire solid angle of 4. The particle energy is defined within a range,
E€ [E i Epax] -

The appropriate boundary conditions to Eq. (1) are usually given by

specifying in that the incoming flux at an external boundary:

Y(ry, Q, E) = v, (L, E) for Q-n, <0 (2)



where r, and n, are the position vector and outward normal on the external

boundary, respectively.

Equation (1) is often referred to as the first-order form of the Boltzmann
transport equation. Physically, it is a mathematical statement of particle
balance over a differential volume in the phase space of (r, Q, E). The first
term on the left of Eq. (1) represents change in particle angular density due to
the motion of the particles in a straight line without any collisions while the
second term represents the rate of removal due to collisions with matter. The
two terms on the right of Eq. (1) represent the particle contribution from

collision and external source.

Two physical quantities of interest can be computed directly from the
angular flux. The scalar flux is defined as the angular integral of the angular

flux:
0 E) = [ w(r.Q E)dQ 3
4
The current is defined as the angular integral of the angular current:
J(r,E) = j Qu(r, Q, E)dQ o)
4n

Integrating Eq. (1) over the entire angular, energy and spatial domain, we

obtain the global balance equation:
j v-J(r)dV+j G (r)0(r)dv :j n-J(r)dA+J. G, (r)0(r)dvV =j S(r)dV (5)
14 % A |4 v

where 0(r), J(r) and S(r) are the integrals of the scalar flux, current and
external source over the energy range, o (r) = o,(r)-o.(r) 1s the particle

absorption cross section.

10



2.1 Multigroup Legendre Approximation

The total and scattering cross sections are strongly dependent on material
composition. Furthermore, they are complicated functions in terms of particle
energy and scattering angle. For computational purposes it is customary to
reduce the Boltzmann transport equation to a more manageable form before
applying any numerical methods. Traditionally, the differential scattering
cross section in Eq. (1) is expanded in terms of orthogonal functions, typically,
the Legendre polynomials,? P,(lhg), where pu, = Q- Q is the cosine of the

scattering angle in the laboratory system.

o(r,Q —>Q E —E)

o, (r,Q -Q E —FE)

o,(r, ug E"— E)
(6)

o 20+ 1 ,
=y a0 E' = E)P(1)
[=0
The scattering moments are determined from the orthogonal property of

the Legendre polynomials,
1
6(r,E'>E) = 27c_|. (0,1 1o, E — E)P,(Ug)dig . 7

The expansion in Eq. (6) is usually truncated, retaining only as many
terms as 1s consistent with the level of approximation being applied to the
angular flux and with the severity of anisotropy presented in the differential
cross sections. This is known as the P; approximation. For neutron and
photon transport, only the first few terms in the series are required to
accurately model the scattering process. For electron transport, higher order

of expansions are required to adequately model the forward-peak scattering.

Substituting Eq. (6) into Eq. (1), the scattering source term becomes

11



0.(r,Q.E) j:L 6,(r, Q" — Q. E' = EYu(r, Q', E')dQ dE’

+1 e ’ / ’ ’ /
jo Lnol(r, E' = E)P/(uo)y(r, ', E')dQ'dE

HMt\th
AN

l
E_‘, V(@) [ 0/(r E' = E)Y,(Q)w(r, @ E')dQdE’

where we have applied the addition theorem of spherical harmonics, and
Y,,(Q) is the spherical harmonics and Yl*m(Q’) is its complex conjugate, as

described in Appendix A.

The next step is to divide the energy range of interest, that is,

E, .SE<E,, , into a finite number, G, of intervals. Each energy interval is
called a group which is bounded by the energy values £, and E,. The
particles in group g are taken to be those with energies between E g+ and E .

The group angular flux 1s defined by
Y, (r,Q) = jz v(r, Q, E)dE. )

Furthermore, the integral over the entire energy range is represented by

deE f dE = zf dE (10)

g=1

With these definitions, the continuous-energy form of Eq. (1) can be

approximated by the multigroup transport equations:

Q- Vuf (r Q)+ Gg(r)wg(r, Q)

: . (11)
2 Z D Glg/g(r)Ylm(Q)LnYlm(Q’)wg(r,Q’)dQ’+Qg(r,Q)
=1l=0m=-I

for g = 1, G, where 0,(r) is the group-averaged total cross section and

Oyro(T) is the group-to-group scattering moment. These multigroup

12
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parameters have to be evaluated with the detailed energy dependence of the
cross section data and the spectral weighting functions to accurately

characterize the system under consideration.

The multigroup approximation effectively converts the continuous-energy
transport equation to a set of simultaneous equations for the discrete energy
groups. In practice one will solve these equations successively as a sequence of
one-group problems in which the contributions from other groups are
combined with the external source § (1 Q) to be treated as an inhomogeneous

source term:

L [

Qg(r,.Q) = Z Eclg'g(r) 2 Yzm(Q)L Y;m(Q’)wg,(r,Q’)a’Q’+Sg(r,S2). (12)
§#g1=0 m=—{ T

Thus, the multigroup transport equation becomes

Q- Yy (r, Q) +0,(NV,(r. Q)
L {

= Yo, Y Ylm(Q)J.mYl*m(Q’)wg(r, Q)dQ + 0, (r, Q)
[=0 m=-l

(13)

It 1s noted the second term on the left accounts for removal of particles from
collisions while the first term on the right represents contribution from
scattering in which particles change their directions of motion but remain in
the same energy group. The difference of these two terms is the net removal of
particles from an energy group. For this reason, we can define a removal

operator

R,y ,(r, Q)
L 1

= 0, (NV,(r.Q) - Y o, ¥ Ylm(gz)j4nyfm(g')wg(r, Q")dQ’
[=0 m=-l

(14)

and express Eq. (13) in a simple form

13



Q- Vy,(r,Q) + R (r.Q) = 0,(r. Q). (15)

Conventionally, the scattering terms in Eq. (13) are evaluated in terms of
the angular moments. As shown in Appendix A, the spherical harmonics

satisfy the following relationship:

4

l
4 T[ 7 ’
P(Q-Q) =575 3 [ij(gz)yjm(g ) +Y),,(2)Y),(Q )}, (16)
m=0

where chm(Q) and Y?m(Q) are the cosine- and sine-components of the

spherical harmonics, respectively. This allows us to rewrite Eq. (13) as

Q- Vy,(r, Q) +0,(Ny,(r.Q)
{

L
= T 0, 3 [ V@752 4 V@Y 5@ v, 242 + 0, r. @) .
[=0 m=20

L !
= T 04 Y [Y1n(@)050,(r) + V(@05 (r) | + Q. )

=0 m=20

where the angular moments are defined by

Ogim(r) = LnYlCm(.Q)wg(r,Q)dQ and ¢;,,,(r) = Lnyjm(gz)wg(r,gz)dsz. (18)

The group-to-group scattering source can be evaluated accordingly as

c : C C S N (19)
= 2 X oM X [Ylm(g)q)g,,m(r) + Ylm(Q)d)g,lm(r)} +5,(r, Q)
& #81=0 m=0

From this point forward, we will omit the subscript g in the multigroup
transport equation (17) with the notion that this equation will be solved group
by group. Hence, we will concentrate on the one-group transport equation in

the form of

14



Ty(r,Q) = 0(r, Q) (20)

with
Tu(r, Q) = Q- Vy(r. Q) + Ry(r, Q) 21)
Ry(r, Q)
L ! .
= (Y. Q)= Y o/r) Y ¥,(@)] ¥, (Q)w(r,Q)de’
[=0 m= -l an (22)
L l
= o(NY(r, Q) - Y o,r) Y, [YZCm(Q)Q)ZCm(r)+Y?m(Q)¢§m(r)}
=0 m=0

In two-dimensional cartesian geometry, the angular flux is independent of
the z-coordinate and has mirror symmetry about the x-y plane. If a direction
Q 1s represented by a polar angle 6(= cos—lu) measured from the positive z-
axis and an azimuthal angle ¢ measured from the positive x-axis (see Figure

A-1), we can express this symmetry condition as

Y(r,—u, @) = y(r,u ). (23)

Hence, we only need to consider the angular flux over half of the
directions, 0<pu <1 and 0<@<2n. Using the following property of the

associated Legendre polynomial

m l+m
Pl (-p) = (1) ""P](w) , (24)

it can be shown that those terms with odd [ + m vanish from the within-group
scattering integral. The values of m in the summation are restricted to even

[+m:

15



Ry(r, Q)
L !

= oW~ Y o) 3 ¥ @050+ T @0,;]
[=0 m=0 "
even [+ m

and the angular moments are evaluated over half of the angular domain

Opa(r) = jznyfm(g)w(r, Q)dQ and ¢;,(r) = jznyjm(g)w(r,g)dg. (26)

2.2 Discrete Ordinates Approximation

In this section, we will briefly discuss the classical Discrete Ordinates
(Sn) method commonly used to approximate the angular dependence in the
multigroup transport equation. In this approach, the angular variable Q 1is
discretized into a number of directions (angles) and the transport equation is
then derived for each direction. The integral over direction, which describes
the direction-to-direction transfer, is replaced by a corresponding quadrature

mtegration:

Nd

Ln £(Q)dQ = Elwn f(Q) (27)
where Q and w, is the nth pair of direction and Weighf, respectively.
Furthermore, it is assumed that f(€) is constant within an angular bin AQ
about Q . Selection of the value of N, hence the number of directions, depends
on the required degree of accuracy. For a truncated cross-section expansion,
the number of directions is often chosen so that the angular moments and the
scattering source can be evaluated as accurately as possible. In the case of a
SnPyp approximation, the corresponding number of directions (N,) and

angular moments (N, ) are given in Table 1 with conventional choice of even

value of N and odd value of L.

16



Table 1. Number of Discrete Directions (~,) and Angular
Moments (V,,) for the Angular Flux with a Standard S\Py,

Approximation.
Dimensionality N, N,
1 N L
2 %’(N+2) %(L+1)(L+2)
3 N(N +2) (L+1)°

Using the quadrature formula, the angular moments given in Eq. (18) can

be evaluated by

Nd Nd
Op(r) = 3 w, ¥ (QIV,(r) and ¢),,(r) = > w, Y, ()W, (r),

n=1 n=1

(28)

where y,(r) = y(r,Q,) and is assumed to be constant within an incremental

angular range about Q . We can then define a discrete-to-moment matrix

which maps the discrete angular flux to the angular moments:

o = [DIV

where

e : ..
¢ = a column vector of size N, containing the angular moments,

<4
]

a column vector of size N, containing the discrete angular flux

i) wor) iy )]

and

17
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[D] = the discrete-to-moment matrix of size N, X N ;.

As shown in Appendix B, it is possible to arrange the angular moments in
an orderly vector and assign a unique index & to a specified moment. This

allows us to define the components in the discrete-to-moment matrix by

Dy, = w, Y1, () orw, Y, (Q) for1<k<N, and I<n<N,, (30)

n

where k is determined by a pair of / and m.

The discrete form of the multigroup transport equation can be obtained by

integrating Eq. (17) over an incremental range about the direction Q, :

w,Q -V, (r)+ w,o(r)v,(r)

i

L !
wnZZOGI(r)mZO[Yfm(gn)%cm(”) + Y?m(gn)q’fm(’)} (1) (31)

L l Ny
W, 20U Y X W i @)Y i) + YRV 1R, Wilr) + 1,0, (1)
(=0

m=0n"=1

for 1<n<N,. Combining the last equations for all directions and arranging
these results in a matrix form lead to a compact expression for the discrete-

ordinates approximation:

[AIV +[RIY = W10, (32)

-2 ..
where \-1)1 and Q are vectors containing the angular flux and the external
source, respectively. The matrix [A] is a diagonal matrix consisting of the

streaming operator along the discrete directions

[A] = diag[AlAz...ANd:', (33)

where A, f = w,Q - Vf. The removal matrix [R] is a square matrix and has

the form of:

18



[R] = o[W]-[W][M][Z][D] 34)
where ¢ = o(r),

[W] = a N;x N, diagonal matrix

diag[w1 Ws ... WN;I,

[£] = a N, xN,, diagonal matrix

1!

diag [Go(r) o.(r) ... CL(I‘)],
[M] = the moment-to-discrete matrix of size N, x N, ,

with M, = ¥, (Q,) or ¥, (Q,) for I<k<N, and 1<n<N,, and [D] is the
discrete-to-moment matrix as defined in Eq. (30).

The matrix [R] is simply a discrete representation of the operator R
given in Eq. (22). The scattering matrix [S] = [M][Z][D] comprises of three
components and represents the discrete form of the within-group scattering
integral in Eq. (17). In other words, it defines a mapping between the discrete
angular flux and the discrete scattering source. It is interesting to note that
the matrices [W][S] and [R] are symmetric for any standard quadrature sets.
These result directly from the assumption that the scattering kernel depends
only on the direction cosine between two scattering angles. In addition, the

discrete-to-moment and moment-to-discrete matrices satisfy the relationship
(D] = [W[M]. (35)

Furthermore, the matrix [Z] depends on the indexing scheme in which
the angular moments are ordered. For example, for a three-dimensional Pq

approximation, the moment vector is arranged as
C C C S c cC C ) A o C C C s A S
[%0‘1)10‘1’11¢11¢20¢21¢22¢21¢22¢30¢31¢32¢33¢31¢32¢33}

and the corresponding scattering cross-section matrix is given by

[Z] = diag[cool0101020202020203030303030363}.

19



2.3 Galerkin Quadrature Method

In the last section, we outlined the procedure to construct the scattering
matrix in terms of the moment-to-discrete and discrete-to-moment matrices
with the standard Sy method in which a set of directions and weights is
specified. An alternative approach was proposed by Morel® to compose the
scattering matrix based the Galerkin finite-element method, while the rest of
transport equation is treated by the standard Sy method. In this approach,
the angular flux is first represented by a set of interpolation functions
(spherical harmonics). The matrices [M] and [D] are then obtained by
requiring that the discrete scattering source from the interpolatory
representation provides the same angular moments as the scattering source
calculated with the interpolatory representation of the angular flux. This

requirement translates into the relationship:

(D] = (M]. (36)

and implies that one need only to invert the moment-to-discrete matrix to

obtain the discrete-to-moment matrix.

For multi-dimensional geometries, the number of directions in the
standard Sy quadrature set is greater than the number of moments to expand
the Py.; scattering source. Thus, it is necessary to incorporate higher-order
angular moments (with L <) to make [M] square and invertible. A suitable
recipe suggested by Morel is summarized in Table 2 where the components of
the matrix [M] and the ranges of [ and m are given for two- and three-

dimensional geometries.

The scattering matrix produced by the Galerkin quadrature method may
not be symmetric but this method offers two distinctive advantages over the
standard Sy quadrature. First, a delta-function scattering is treated exactly
with the Galerkin scattering matrix due to the requirement of Eq. (36).

Conversely, the standard quadrature set often produces an unstable

20



scattering matrix. Second, the extra angular moments needed to make [M] a
square matrix also make it possible to use the higher-order cross-section
moments (see Table 2) moments in computing the scattering source. This may
lead to a more accurate solution if the angular flux and cross section are

highly anisotropic.

Table 2. Subsets of Spherical Harmonics Used to Construct the
Moment-to-Discrete Matrix for the Angular Flux.

Two-Dimensional Geometry

Y () Y (Q)
[ m l m
0,1 1,1
even !/ +m even [ +m
1.4
o L N [1.{]
even !+ m
Three-Dimensional Geometry
Y 1n(Q) Y, (Q)
[ m l m
[0,N -1] [0, 1] [I,N-1] [1,7]
ILN~1
N L1, | N [1.N]
odd m
2. N
Nowid [2, V]
even i

1. The symbol [a, b] indicates the index ranges from a to b with the
footnote indicating the restricted values.

2. The shaded entries are the additional spherical harmonics to make
the moment-to-discrete matrix invertible.

2

1
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3. Self-Adjoint Angular Flux Equation

The self-adjoint angular flux (SAAF) equation has recently been brought
into attention as a basis for numerical transport methods. In this section, we
will first derive the SAAF equation by manipulating the Boltzmann transport
equation and formally inverting the removal operator. The result is a
differential-integral equation for the angular flux but containing a second-order
differential operator in space. We then apply the discrete ordinates

approximation and structure the discrete equations into a matrix form.

3.1 Derivation

The SAAF equation can be derived symbolically in two steps. First, we solve

y(r, Q) from Eq. (20)

vr.Q) = R0 @)- 2 Vu(r)| (37)
and then substitute the result into the streaming operator in Eq. (20):
_Q. V[R“Q Vy(r, Q)} LRY(r,Q) = O(r,Q)-Q- V[R_IQ(r, Q)} T

As shown in Appendix C, the second-order transport operator as defined by

Toy(r.Q) = -Q- V[R'IQ V(r, Q)]+Rw(r, Q), (39)

along with the operators R and R are symmetric (self-adjoint) and positive
definite (SPD). This allows us to apply the Galerkin finite element method to
treat the spatial dependence and obtain the same system of equations as in the

Rayleigh-Ritz method which exhibits the SPD properties.

23



We still need to derive a formal expression of R™'. From Egs. (20-22), we

have

L !
c(y(r, - Y o ¥ YZHZ(Q)J.MY;m(Q’)w(r,Q’)dg,
=0 m=-/
= 0(r,Q)-Q - Vy(r, Q)

(40)

Multiplying the last equation by Y;n(Q) and integrating the result over 4n

leads to
o(rf, Y, (Q)y(r, Q)dQ - JOI Y, (Q)(r, Q)dQ

= Ln yjm(g)[Q(r, Q) -Q - Vy(r, Q)}dﬁ

and

1
Lnyfm(g)w(r,sz)dg = [G(r)—sl(r)} Ln Yfm(g)[Q(r,Q)_sz-w(r,sz)]dg.

Replacing the integral term in Eq. (40) by the last expression and solving for

y(r, Q) yield

1

y(r, Q) = o)

{:Q(r, Q)-Q - Vy(r, sz)}
i (41)

o,(r) PRSI Y;m(Q’)[Q(r,Q’)_Q' Ty, Q’)]dg’
=]

1
"5t 2 5 o)

Comparing Eqgs. (37) and (41), we can identify the functional form of the inverse

removal operator:

R f(r. Q)

L !
_ ! c,(r) . o (42)
- g(r)[f(r’ Q) +[§0mm§_lmm(g)hn Y, (Q)f(r, Q )dgg:l
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There are several characteristics of the SAAF equation worth noting. First,
the unknown in the SAAF equation is still the angular flux over the entire
angular domain. The vacuum and reflective boundary conditions for the
incoming directions of the first-order transport equation can be applied with no
alteration. However, as shown in Eq. (38), the SAAF equation contains second-
order spatial derivatives and thus requires additional boundary conditions to
properly formulate the problem. One stipulation is to require the angular flux
in the outgoing directions to satisfy the first-order transport equation at the

boundary:
Q- Vy(r,, Q) +Ry(r, Q) = Q(r,, Q) for @ -n,>0 (43)

Second, the previous derivation of the SAAF equation breaks down when
applying it to a void region due to the presence of the total cross section in the
denominator of the inverse removal operator. One possible remedy* is to start
with the SAAF equation for a purely absorbing medium with uniform cross

section:

—Q- V[—G—I—Q - Vy(r, Q)} +0,y(r,Q) = 0.

a

Multiplying the last expression by ¢, and taking the limit as 6, — 0, we obtain

the SAAF equation for a void region:

Q. v[g V(r, Q)} = 0.

3.2 Discrete Ordinates Approximation

The discrete SAAF equation can be obtained by integrating Eq. (38) over an

incremental range in the directional space and collecting terms:
~ > > - - >
~[ANRIAMW + [R]y = [W]Q - [AJIRIIW]Q (44)
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where \_ff and Q are vectors containing the discrete angular flux and the
extraneous source, respectively. The streaming matrix [A], the removal matrix
[R] and the diagonal matrix [W] are previously defined in Section 2.2. The

matrix [R] has the same form as the removal matrix and is defined as

[R] = 1[[W1‘1 +[M][i1[D][W]“] 45)
(e}

where [M] and [D] are the moment-to-discrete and discrete-to-moment

matrices. and

(2]

a N, xN, diagonal matrix

" g{ o(r) o) 6,(r) }
o )

(r)—0o(r) o(r)~o,(r) = o(r)-o,(r

We can make two observations about the matrix [R]. First, like [R], the
matrix [R] is symmetric for any standard quadrature sets but asymmetric for
the Galerkin quadrature method. It is not obvious that there is an effortless

way to symmetrize these matrices [R] and [R] for the latter case.

Second, it is noted that the operators R and R given in Egs. (22) and (42)

satisfy the following condition

y(r,Q) = R'Ry(r,Q), (46)

which can be easily verified by applying the following orthonormal properties of

the spherical harmonics:

L Y; ()Y, (Q)dQ = 5,8 47)
T

mm’?

(48)

’.
mm

jm Y} (@)Y, (2)dQ = (1-8,,)8,



On the contrary, the matrix [R] is the exact inverse of [R] if and only if the
product of [M] and [D] is an identity matrix. This condition may not be
satisfied by the matrices [M] and [D] generated from a standard quadrature
set since the standard quadrature set does not guarantee to integrate Eqgs. (47-
48) exactly for any given orders of [ and m. However, this condition is

guaranteed by the Galerkin scattering matrices as stated in Section 2.3.
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4. Even-Odd Parity Equations

The even- and odd-parity (EOP) equations have been employed for a wide
variety of numerical transport codes,? especially in the applications of the
continuous finite element methods in nuclear reactor analysis. In the
following sections, we will present the derivation of the EOP equations by
following a standard procedure. The results are two differential-integral
equations similar to the SAAF equation, but are for the even- and odd-
components of the angular flux. We then apply the discrete ordinates

approximation and package the discrete equations into a matrix form.

4.1 Derivation

We start with the one-group transport equation expressed in the form of

Q- Vy(r, Q)+ o(ryu(r, Q)

(49)

L
) ,20214;1"1“%&(9 Q)y(r, )42+ O(r, Q)

and decompose the angular flux into the even-(symmetric) and odd-parity

(asymmetric) components as

y(r, Q) = y'(r, Q) +v°(r, Q), (50)

where the even-parity angular flux is defined by

Vi, Q) = %[w(r,9)+u}(r, —Q)}, (51)

and the odd-parity angular flux is defined by
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1
W’r Q) = 5[ Q) -v(rn-9) (52
Since Eq. (49) holds for —-Q, we have

—Q - Vy(r, -Q) + o (r)w(r, -Q)

_ 3y L lon] P02 0)u(r, )40 + 00, ) o
[=0 T
Adding Egs. (49) and (53) and utilizing Egs. (51) and (52) lead to
Q- Vy’(r, Q) +o(r)y'(r, Q)
- %l ;2_’4%_10,@)]“ [P,(Q QY+ P(-Q - Q’)Jw(r, Q4R + 0 (n Q) o,

Y Zon[ Py (. 9140+ 0°(r, Q)

even [
where

0'(r. @) = 5[0(. Q)+ 0(r.-) |

It is noted that the terms with odd values of [ in the summation vanish as
results of P(-Q- Q") = (-1)'P(Q- Q).

Subtracting Eq. (563) from (49) yields

Q- Vyi(r, Q) +o(r)v’(r, Q)

1w 2041 , , o,
52‘,0 4; Gl(r)Ln[Pl(Q-Q)-Pl(—Q-Q )}u(r,Q)dQ +Q'nQ) o

= 32 e[ Pra @)y(r @)de + 0°(r, Q)
odd: 4™ an

where

0°(r.9) = 5[ 0r. ) - 00 -9)|.
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Analogous to the Boltzmann transport equation, we can define the

removal operators for the even- and odd-parity angular flux:

R,y (r, Q)
= o)~ Y Elon| P(@- 0 (r.Q)aQ’
’ even / 4m l 4n l ’
. : . . , (56)
=o' Q- Y o) Y Y[m(Q)L Y, (Q)(r, Q)dQ
even [ m=—l T
!
= oW (- T 0 T [ ¥, ()05() + ¥in(@05(7) |
even [ m=0
R, u'(r, Q)
= o(ry’(rQ)- Y 214;101(r)_[ P(Q- Q)W (r, Q)dQ
odd { 4n
” : N . (57)
= o(Ny’(r,Q)- Y oyr) Y Ylm(Q)L Y, (Q)W°(r, Q)dQ’
odd { = - T
l
= 0NV’ (r. Q)= ¥ 0r) 3 [75,(@)005(r) + ¥, (@075 |
odd / m=1
The angular moments for the parity flux are
O (r) = [ Vi (@ (r. @)de, (58)

where the symbol o€ {e, 0} is used to distinguish the even- or odd-parity
angular flux and the symbol B € {c, s} is used to denote the cosine- or sine-
moment. With the removal operators defined, we can rewrite Egs. (54) and
(55) as

Q- vy’ (r,Q) + R (r, Q) = 0°(r, Q), (59)

Q- Vy(r,Q)+Ry'(r,Q) = 0°(r, Q). (60)
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Solving y’(r, Q) from Eq. (60)

vo(r, Q) = Rj[Q”(r, Q)-Q- we(r,sz)J 61)

and substituting the result into the streaming operator in Eq. (569), we obtain

the even-parity equation:

_Q.V[R;Q-Vwe(r,Q)}+Re\ue(r,Q) - Qe(r,Q)—Q~V[R;1QO(r,Q)] 62)

One can repeat this process and obtain the odd-parity equation

_Q.V[Rjgz.we(r,gz)}rRow"(r,Q) = 0°r. Q)—Q-V[R;lQe(r,Q):l. (63)

The EOP equations, Egs. (62-63), have the same basic form as the SAAF
equation. Consequently, we can derive the functional form of the inverse

operators by following the same procedure used in deriving the SAAF

equation.
R, f(r, Q)
) ﬁ[ﬂr’ > ,&7%)7(7)2_1 V(@) Vi@, Q’)d@'} .
R, f(r, Q)
) ﬁ[ﬂr’ o dzdl#rc),mmil V(@] Y@ Q’)d@'} >

Finally, the transport operators for the even- and odd-parity angular flux

are defined as:
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Ty Q) = -9 V[R}e vy'e, Q)J + Ry (r, Q), (66)

T, v'(nQ) = - V|R}'e v, Q)] +RLY(r, Q). 67)

As shown in Reference 3, these operators are symmetric and positive definite.
Proofs of these properties are similar to those for the SAAF equation and will
not be duplicated here. We also stress the similarity between the EOP
equations: they have the same structure except that the limits on summation
are different. For this reason, we will express the EOP equations in a common
form in the following sections except for the instance where we have to

distinguish the even- or odd-parity angular flux.

The corresponding vacuum boundary conditions for the even- and odd-
parity flux can be deduced from that for the Boltzmann transport equation.
Since the EOP equations are second-order in space, both the incoming and
outgoing parity flux are specified to provide proper number of conditions.
Consider the boundary conditions where the incoming angular flux are

specified:
Y(r, Q) = y,(Q) for Q-n, <0

where r, and n, are the position vector and outward normal on the external
boundary, respectively. Following the decomposition given in Eq. (50), the

condition on the incoming flux can be expressed as

Y(r, Q) = ¥i(r, Q) +y’(r, Q) = y,(Q) for Q- n, <0, (68)

and it also holds for —-Q

y(r,-Q) = \ye(rb,g)—\uo(rb,Q) = Y, (-Q) for Q-n,>0. (69)
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Utilizing the result in Eq. (61) to eliminate the odd-parity flux from the

last two equations, we have the boundary conditions for the even-parity flux

~R,Q -V (ry, Q) + ¥ (r, Q) = v, (Q) - R, 0°(r,, Q) for Q-n, <0, (70)

R, Q- V' (ry, Q) + W' (r, Q) = y,(-Q) + R, 0°(ry, Q) for @ -m,>0. (71)
Similarly, the boundary conditions for the odd-parity flux are

“R,'Q - VO(r, Q) + ¥ (ry, Q) = v, (Q)-R,' 0 (r,, Q) forQ-m, <0, (72)

R, Q Vy(ry, Q) +y'(r, Q) = —y,(-Q) + R, 0°(r,, Q) for Q-n,>0. (73)

4.2 Symmetry Conditions

The even- and odd-parity flux defined in Eqgs. (51) and (52) are symmetric
and asymmetric in Q, respectively. These conditions allow us to model the
angular flux only over half of the angular domain. If a direction Q is
represented by a polar angle 0(= cos_lu) measured from the positive z-axis
and an azimuthal angle ¢ measured from the positive x-axis, we can express

these conditions as
v -Q) =y (r,Q=vy'(r,-n,1+0) =y (r,u, @), (74)

vo(r,-Q) = —y’(r, Q) = y'(r, -u, t+ @) = —y’(r, 1, 9), (75)

for -1 <u<1 and 0< @ <m. Furthermore, the spherical harmonics satisfy the

following relationships,

I
Yo (L @)+ (=1) Y] (-, T+0) = 2V, (4, 0) (76)
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Y, (L @)+ (-1) Y, (-, m+0¢) = 2Y, (1, 0) (77)

since

[+m

P(-p) = (=1) " "P(w)
cosm(m+ @) = (-1)"cosm@

sinm(m + @) = (=1)"sinme

Using these identities, we can reduce the range of the integration from 47 to

27 in all the integrals over Q. Consequently, the angular moments become

Om (1) = [ Yi (@ Q)4 79

Im

For two-dimensional cartesian geometry, the parity flux have mirror
symmetry about the x-y plane. That is, the parity flux are symmetric in u. We

have two additional conditions on the even- and odd-parity flux

yor - 0) = v 0), (79)

vo(r, - 0) = v(r.u e), (80)

for 0 <u < 1. The removal operators defined in Eqgs. (56) and (57) become

Row'(r, Q)
l
= o @)= 3 o) 3 [¥i @i+ @]
even [ m=20
Ry’ (r, Q)
o : c oc s os (82)
= o' (r Q)= T oir) 3 [ ¥,(2)075() + ¥, (206501
odd / m=1
odd m
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with

0%P(r) = anB (Qu(r, Q)dQ, (83)

Im

and the limits of the summation are restricted to even [ + m.

4.3 Discrete Ordinates Approximation

As stated in the last section, we only need to consider the parity flux over
half of the angular range due to the symmetry conditions. Hence, when
applying the discrete ordinates method, the number of discrete directions
employed in the EOP equations is half of that for the angular flux. In the case
of a standard SyPy, approximation, the corresponding number of directions
(N,) and angular moments (an and an) are given in Table 3 where it is
assumed that N is even and L is odd. It is also noted that there are %(L +1)
less angular moments for the odd-parity flux since all moments with m = 0

vanish due to the symmetry conditions.

Table 3. Number of Discrete Directions and Angular Moments for
the EOP Equations with a Standard SyP;, Approximation.

Dimensionality N, N® NY
i Ly L L
3
> Inviv+2) L+ +3) L +1)
3 4 4
3 %N(N+ 2) %(L+ 1)(L+2) éL(L+ 1

Using the quadrature formula, the angular moments given in Eq. (83) can be

evaluated by
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N,
0ib(ry = 3w, ¥h (@ )wr) (84)

n=1

where \uf(r) = y(r, Q) is assumed to be constant within an incremental
range about Q, . Again, the letters, oe {e,0} and Be {¢, s}, are used to
denote the angular moments of the parity flux. Similar to the angular flux, we
can then define two discrete-to-moment matrices which map the discrete

parity flux to the angular moments:

9
0o = [DylV (85)

where

(_j))a = column vectors containing the even- or odd- parity angular moments,
and

1?1(1 = column vectors containing the discrete even- or odd-parity flux.

For a standard quadrature set, the components in the discrete-to-moment

matrices have the form of

Dl o= w Y, (Q)orwY; (Q) for 1 <k<N: and1<n<N,, (86)

. . . > .
where k is a function of / and m, and its value depends on how 0, is
organized. For the Galerkin quadrature method, [D,] is the inverse of the

moment-to-discrete matrix [M ], which will be defined next.

The discrete EOP equations can be arranged in the following form:

% > = 2 = -2
— AR AN, +[R W, = [W]Q, — [A][R,I[W]Q,, (87)

~ > - - ~ >
= [AIR AN, + [R, 1y, = [W]Q, — [AIIRIIW]Q,, (88)
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> > ,
where O, and Q, are vectors containing the discrete extraneous source for the
even- and odd-parity flux, respectively. The streaming matrix [A] is

previously defined in Section 2.2. The matrices [R,] and [Ry] are defined as

[Ry] = o[W]-[WIIMIZ][Dgl, (89)

=~ 1 -1 z -1
[Rod = S[ W1+ IMIEIDIWT], (90)
where
04 o - . .. . .
[Z,] =aN_ XN, diagonal matrix containing the scattering cross sections

[Z¢] = a NS:I X N::l diagonal matrix

i g[ o) o) 5,(r) }
o )

(r)=oy(r) o(r)-c,(r) ~ o(r)-o.(r

and MZk = chm(Qn) or Ylsm(Qn) for 1<k San, 1<n<N,. Subsets of spherical
harmonics selected to construct the moment-to-discrete matrices are given in
Table 4 for two- and three-dimensional geometries. The shaded entries are the
additional spherical harmonics to make the moment-to-discrete matrix

invertible.
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Table 4. Subsets of Spherical Harmonics Used to Construct the
Moment-to-Discrete Matrix for the EOP Equation.

Two-Dimensional Geometry

Even-Parity Flux

Odd-Parity Flux

Y, (Q) Y, () Y, (Q) Y, (Q)
l m [ m [ m [ m
(0,N-2]1 [0,]] [2,N-2]| [0,1] [LN-1]} [L1] [I,N-1] [L,1]
even [ even m even [ even m odd ! odd m odd !/ odd m
2,N
o i N [ ] B . i S
even m
Three-Dimensional Geometry
Even-Parity Flux Odd-Parity Flux
Y () Y},(Q) Y, (Q) Y (Q)
[ m l m l m I m
OON-2 2,N=-2 1,N-1 I,N-1
[ . {0, 1] [ ] [1,1] [ : [1,1] [ . [1,17]
even [ even / odd !/ odd !/
| LN L | | RN
N [ ] N [1, N] - —- N+1 \ [ ‘ ]F
| oddm _ i evenm -

* The symbol [a, b] indicates the index ranges from a to b with the

footnote indicating the restricted values.
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5. Summary

We have applied the discrete ordinates approximation to the second-order
transport equations and demonstrated that they can be cast into a unified
form with properly defined matrix operators. This common representation can
be applied to either the SAAF equation or the EOP equations. The
components of these matrix operators are itemized in detail for both the
standard quadrature set and the Galerkin quadrature method. Finally, these
formulations allow us to derive and program the corresponding finite-element
equations in a common setting which are the foundations of the CEPTRE

code.
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Appendix A. Properties of Spherical Harmonics

The normalized spherical harmonics, Y,,,(€2), are defined by

20+ 1(1-m)1T7Y2 _m, . imo
— —_ A'l
V(@) = Y 0) = | TG | P e (-
for [ = 0...cc and m = -/, [, where Q is an unit vector represented by a polar

angle 6 and an azimuthal angle ¢ as shown in Figure A-1,

u = cosB, (A-2)

and P;"( u) is the associated Legendre function of order I and degree m.

The spherical harmonics are orthonormal in that

* 27 1 *
[, Yem (@Y1 (dQ = [ [ Ypp( @)Y (1, 0)d0dO = 88, (A3)
where Y;km(u, @) 1s the complex conjugate of Y, (1, ®), and

V(i 0) = (<1, (1, ). (A-d)

The spherical harmonics satisfy the important addition theorem. Consider
two vectors, Q and Q’, which have the coordinates (i, @) and (n’, ¢"). Let 8,
be the angle between the vectors Q and Q’, then

Uo=Q - Q" = cosB, = cosBcosO’ + sinBsin®’cos(@ —¢"). (A-5)

The addition theorem states that

l
4n * ’ ’

m=-l
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Appendix C. Symmetry and Positive Definiteness of the
Transport Operators

In this appendix, we will show that the operators R, R , and T, defined
in Section 3 for the SAAF equation are symmetric and positive definite. An

operator L is symmetric if
{(v,Lu) = {(Lv,u), (C-1)
and is strictly positive definite if
(u, Lu) >0 (C-2)

for all non-zero functions # and v. The symbol (u,v) denotes the inner

product between two functions:
(u, v) :f j u(r, Q)v(r, Q)dQav . (C-3)
Vidn

Furthermore, the following boundary conditions are imposed on the

functions under consideration:
u(r, Q) = f(Q) for Q- n, <0, (C-4)
Q- Vu(r,, Q)+ Ru(r,, Q) = 0 for Q-n, >0, (C-5)

where r, and n, are the position vector and outward normal on the external

boundary, respectively.

C.1 Removal Operator

The removal operator R in the one-group transport equation is defined in

Eq. (22) and can be written as
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Ru(r, Q) = o(r)u(r, Q)—L G (r, Q" - Q)u(r, Q)dQ’ (C-6)

where the scattering cross section only depends on the cosine of the scattering
angle between the incoming and outgoing directions. The removal operator R

can be shown to be symmetric by substituting the last equation into Eq. (C-1):

{v, Ru)

= J'VL v(r, Q)[G(r)u(r, Q)-J'4 G, (r, Q- Q)u(r, Q/)dgf}dgdv
(C-7)

ij u(r, Q)[G(r)v(r, Q-] o,rne-@mr, Q')dgz'}dgdv

(Rv, u)

where we obtain the second expression by interchanging the variables and

order of integration over angles.

The positive definite condition follows from an application of the Cauchy-

Schwartz inequality:

(u, vy S Ju, uyJ{v,v). (C-8)

{u, Ru)
- JVL,E”(” Q)[G(’)”(ﬂ Q) - Ln o,(r, Q" Q)u(r, Q’)dsz’}dgzdv

- ij c(r)uz(r,sz)dgdv_jVL L 6 (r, Q- Q)u(r, Qu(r, Q')dQ dQdV

2
= o , 2)dQdV
J.VJ.4TE (ryu(r, £2) (C-9)

'.“VL .‘.4 Jo,(r. Q- Q)u(r, Q) Jo (r, Q" Q)u(r, Q")dQ'dQdV

zjVL o(r)u’ (r, Q)dQdV

”«/JTLJMGS“’ Q- Qyu(r, Q)dQ’deVvaf4nJ4nGS(r’ O - Y, ©)dQ ddV

54



Interchanging the variables and order of integration in the first square root

leads to
[ 1] o (r, Q- Q)u’(r,Q)ad@av = [ | | o,(r, Q- Q)u’(r, Q')dQ' dQdV
Vednvydn VYydn<4nm

and
(w Rz [ | [o(r)—j o (r, Q’.Q)dg’}uz(r,g)deV>O. (C-10)
Vedn 47

This inequality is justified if the total cross section is greater than the scat-
tering cross section. Hence the removal operator is symmetric and positive

definite.

C.2 Inverse Removal Operator

The inverse removal operator R in the SAAF equation is given in Eq.

(42) and can be written as

R ur, ) = —L[u(r,gz)+ [6.(r. Q" Qu(r, Q’)dg’}, (C-11)
G(r) 41 ’
where
L I
N o,(r) %
G- =Y ! Y Y, ()Y, (Q). (C-12)
=-/

o -o,r)

Comparing Eq. (C-11) with (C-6), it can be readily shown that the operator
R is symmetric. To prove positive definiteness, consider a function u = Rw

and

{u, R-lu) = (Rw,w)>0. (C-13)

Hence the inverse removal operator is also symmetric and positive definite.
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C.3 Second-Order Transport Operator

The transport operator in the SAAF equation is defined as

Tou(r,Q) = -Q- V[R_XQ - Vu(r, Q)} + Ru(r, Q). (C-14)
Applying the identity

v(r, Q)Q - Vu(r, Q) = V- [Qu(r, Q)u(r, Q)] - u(r, Q)Q - Vv(r, Q). (C-15)

and the divergence theorem, we have

(v, Tgu)

_va(r, Q)(Q : V[R‘IQ  Vu(r, Q)DdeV + (v, Ru)

ij [Q - V(r, Q)][R‘IQ Vu(r, Q)]dgdv

-[ 1 Q-V[v(r,Q)R—IQ-Vu(r,Q)}an’V+ (v, Rus)

= (Q-Vv.R'Q- Vi) + (v, Ru) [ @ n)[v(r, QR'Q - Vu(r, Q) |dQda
(C-16)

= <R_IS2 Vv, Q- Vu) + (Rv, u) —".AJ‘M(Q : n)[u(r, Q)R_IQ - V(r, Q):ldeA

_ IVL [g Vu(r, Q)][R‘IQ Vu(r, Q)JdeV

[ ] e Vl:u(r, QR™'Q - Vu(r, Q)]deV + (Rv, )
VYydan

= _jvjm(g : V[R‘lgz - Vv(r, Q)Du(r, Q)dQdV + (v, Ru)

= (T v, u)
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where we have made use of the boundary conditions given in Egs. (C-3) and

(C-4). To prove the positive definite condition, we can manipulate the interme-

diate results given in Eq. (C-16):

(u, Tgu)

= {(Q -Vu, R'Q- Vi) + (u, Ru) 'LL (Q - n)[u(r, QR Q - Vu(r, Q)]dQdA

(Q-Vu, R™'Q- Vi) + (u, Ru) o [ 1@ nli(r, Q)dQdA
AY4m
(C-17)

which is always positive since both R and R are positive definite and the

surface integral is also positive.
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